NEW CRANIAL ELEMENTS OF A GIANT VARANID FROM QUEENSLAND

R. E. MOLNAR

Molnar, R.E. 199009 20: New cranial elements of a giant varanid from Queensland. Memoirs of the Queensland Museum 29(2): 437-444. Brisbane. ISSN 0079.8835,

Two massive varanid frontals and matching parietal trom the eastern Darling Downs (Queensland) Pleistocene derive from a large varanid, probably Megulania prisca. The frontal is characterised by a sagital crest and low ormamentation on the dorsal surface. The parietal has relatively longer lateral and supratemporal processes than in modern varanids, and a relatively smaller area roofing the braincase. Confluent contacts on the frontal for the prefrontal and postfrontal-postorbitaland the encroachment of the supratemporal fossa onto the dorsal surface of the parietal suggest that M. prisca was a more derived varunid than any now existing in Australia. The frontal appears quite thick and the endocranial cavity small: these both are probably allometric eflects. \square Queensland, Australia, Pleistocene, Varanidae, Megalania, sagitlal crest
R. E. Molnar, Queensland Museum, PO Box 300, Souh Brisbane, Queensland 1101, Austrolio; 19 December, 1988.

The giant varanid, Megalania prisca (Owen, 1859). is among the most dislinctive Australian fossil tetrapods, as well as the largest known terrestrial lepidosaur. It is known from the remains of one skeleton, or possibly two, (Rich. 19S5) from the eastern Darling Downs of Queensland, and isolated remains from there and other localities in the eastern half of Australia (Lydokker, 1888; Hecht, 1975). Fossils of M. prisca are known only from the Pleistocene. Smaller vertebrae attributed to Megalania sp. are known from the Pliocene of Chinchilla, western Darling Downs, Queensland (Hecht, 1975). Recently discovered or recognised material sheds new light, and raises new questions, regarding this animal. The material described here suggests that the skull of M. prisca was unusual in its construction.
Specimen numbers prefixed with 'J' or ' F ' are held in the Queensland Museum, that prefixed with ' V ' in the Ian Sobbe collection and that prefixed by 'BMNH' in the British Museum (Natural History).

DESCRIPTION

In about 1984. Mr Ian Sobbe recovered an unusual bone (F16783) from the Pleistocene deposits at Pearson's Locality, King Creek, easiern Darling Downs, Queensland. In August of 1985 a second, worn specimen (V0033), was recovered, also by Mr Sobbe, from the 'Suiton Bed ${ }^{\circ}$, King Creek west of Clifton. Both elements are left frontals, approximately equal in size
(Table 1). During preparation of this paper, Mr Sobbe donated a large lacertilian right parictal (F16792): collected from King Creck about ten years ago.
In form the frontals are basically like those of Varanus salvadorii (Figs 1.2). In dorsal view the element resembles a reversed L, the stem representing the body of the frontal and the lower bar, the lateral process that contacts the fused postfrontal-postorbital distally and the parietal postcriorly. The nasal contact is like that of Varamus varius, with the dorsal surface of the frontal projecting anteriorly along the midline. This would give the frontonasal contact a V shape, with the apex anteriorly directed. A shalLow horizontal flange dorsally limits the prefrontal contact. there is no such flange in cither V. salvadorii or V. varius. The lateral process of the frontal is anteropostcriorly nar-

	F16783	V00.33
Midline length	89.2	74.3
Maximum lenglt	93.0	85.6
Maximum width	57.2	48.5
Minimum width at orbit	25.4	25.6
Maximum thickness	25.2	19.8

TABLE I. Giant varanid frontals (mm).

FIG. 1. Left frontals of a large varanid, probably Megalania prisca. Unworn frontal (F16783) in dorsal (A) and lateral (C) views. Worn frontal (V0033) in dorsal (B) and lateral (D) views. Scale bar 1 cm .
rower, aclative to its length, than in the modern species examined (in addition th those noted. b'arsams gomblif and Varamus meptensi were seen) The contad surface for the prefrontal mects that lor the postfrontal-postorbital, with no indication of a lree orbital margin on the frontal. as there is in nodern varanid skulls. F16783 is shorter than the trontal of V . salwaderib, more simila in is proportions to that of V. varius. llowever the ophital enargination is placed relafincly futtier back. Ventrally, the frontals are similar in lorm to thuse of the modern species. The subolfactory processes are well developed and extend to the midline. hence would be in contace medially. A small formen penetrates the processes alonit the midine contict.

Thie l'leistocenc lrontals dilfer from those ol mokeno varanids in three particulars. A distinct sagittal crest is present (Fig. 1C), which terminnates pusteriorly in front of the parictal contact. 'lhis indicates that the crest was limited to the lrontal. Litteral to the crest the torsal lace old the frontill is ormamented with low. rounded. mostly parallel ridges (Fig, IA), Low parallel riftges are often found on vertebrac of M. prisca, abutting articulat surlaces, but I how oll noother varatid with such ornament or, for that matter, any other teplike. However, alow dorsal ridge at the frontial symphysis is apparent in the skullis of several varanids, including Varaman mdicus (111117 ind 111018), Varamus spencen (1421322 and 547915), Varanms trisis (55072 6) and 16 barius (. 115361 , J16150 and J47(16.5) If in ahseril in V. gombler (J16/35) and V. merrensi (146280). Finally. and most obviousty, the King Creck ironial is massive. At the parictal contact the depth of the lronut is $1 / 4$ its midine lengelt: in I'. mhadurif this tatio is less than $1 / 10$.
The pariclal (1 il6792) is worn, although less then Volo33. However the ankrior suture pallern is lost. It is a crescentic element (Fig. 2). Apparfently both parietals were fused medially. is in modern varanids. bul this specimen is broken along the midine. Anteriorly the lateral process Erojects perpendicular the longitudinal axis. atiol posteriorly a longer supratemporal process projecte pusterolaterally at an angle of 35 degrees to the longitudinal axis. In propartions the parieal is basically similar to those of V. sahiadorii and V. varius, but differs in having at proportionalely shorter body. In conjunction with this the supatemporal process of the pariclat, whols dosially colltacts the paroceipital prowess. is telavively longer. At the unterior ta. mination uf lle mediolaterally compressed
supratemporal process a prominent borizontal pit penetrates the body nit the parictal. Such a pit is also present im st least V. ravius.

Althogh in form basieally similar those of modern varanisls. this parictal differs in seven: points. A large parictal loramen is prescat, fem in diameser, bur set less bhan 1 cm hack from the frontal contact. Thus it is more anterior than in the modern varanids secen. The supratempural process is horizontal and not declined posteriorly ans in living varanids. The dorsal margin of this process is distinctly clevated from the dorsal face "f the budy. This, logether with the extension ett the supratemporal lenestra over the inp of the parictal to the midline, suggess powerlut dovelopment of the jaw adductors. Correlated with these differenees, the flat dorsal face of the pirictill cevends posterintly from the lrontal confact only to the parictal loranen, unlike the modern varanids available where this surface extends from fronal margin to nceipital lace. The mediolaterally compressed supratemporal process bears is distinct medial shelf along its entire length but Jess prominent distally. Such a shelf was nol seen on any of the modern varanio material available. Ventrally the area of the parictal rowfing the coducranitil cavity is strongly reduced compared to the condition in V, warius (347065) and V, salwodorii (114498). The lincar dimensions of the endocranial roof are twiee those of J4706.5 (V. varmis), but the lengths of the lateral and supratemporal processes are three in four times those of that specimen. This reduction ol amount of the parietal forming the chdoeranial roof is reflected in the extension ol the parictal lateratly beyond the lateral walls oll the brainease.
The hroken face of the parietal shows a depth of 2.5 cm of which her lup 0.5 cm is compact bune and ninst of the remainder isspongy bone. A thin (0.2 em) layer of compaet bone forms the ventral surfice.

Sualing

The large size of the King. Creck varanid chanial materiat leads to questions of its scalineThis is relevant lo the following tancommic discussion and interesting in its own right, fise issues will he raised whelher the apparent thiohness of the lrontals results anly from their tareve size and the relative size of the endacranial ("tvity.

Could the applatance of thickness of the fromLuls and parictal from King Crock sumply lie 1 To fosuln uf stalinge" McMation's clastic scoaling

FIG. 2. Left frontals and right parietal of a large varanid, probably Megalania prisca. Worn frontal (V0033)
(McMahon, 1973; McMahon and Bonner, 1983), for which there is some evidence when applied to the anatomical analogues of columns (Hamley, 1990; McMahon, 1975), tecognises that transverse linear dimensions scale as the 3/2 power of longitudinal linear dimensions. McMahon assumes that the orthogonal transverse dimensions will be equal, that is $\mathrm{D}^{2}=\mathrm{L}^{3}$ where D is the transverse dimension and L the length. However if the two orthogonal transyerse dimensions were not equal, as is here the case. then it would follow from the derivation that D1 $x \mathrm{D} 2=\mathrm{L}^{3}, \operatorname{In}$ this case if D 1 is the width of the frontal and D2 its thickness, we wish to find the value of D2 expected from knowing L and D1, If the large frontal were to have the same resistance to bending as the frontals of smaller modern varanids (here V. salvadorii and V. varius). This analysis ireats the frontals as a plate principally resisting bending stresses imposed in biting, and transmitting the forces then impressed to the parietal and occipital regions of the skull. It also assumes that the frontals can be regarded as simple plates with resistance to bending proportional only to the cross-sectional area. It ignores any possible role in stiffening the frontals of the subolfactory processes, which in varanids make the posterior part of the frontals into a flattened tube. It also ignores the role of the sagittal erest of the King Creek frontals. However these effects will be ignored here for two teasons, first they are technically difficult to treat, and second both considerations would act 10 increase the resistance to bending of the fromtals. Thus consideration of both factors would lend to decrease the estimate of thickness for scaled up frontals. I wish to determine if the King Creek frontals are thicker than expected from arguments of scaling and hence wish to err (if at all) on the side of estimating too thick rather than too thin.
Working with the dimensions of the two available skulls, $J 14498$ (V. salvadorii) and $\$ 47065$ (V. varius), it appears that the thickness of the King Creek frontals is such as would be predicted from elastic scaling. Scaling up the skull of V. salvadorii would give a frontal aboui 20 mm thick, which is close to the thickness of the FI6783 (19.8 mm), while scaling up that of V. varius would predict frontals even thicker, about 45 mm thick. In view of the approximations used in making these calculations, this is viewed as reasonable agreement (i.e. within one order of magnitude), providing no evidence that the frontals from King Creek are unusually thick.

For purposes of an order of magnitude calculation the endocranial cast of a varanid may be approximated by a six-faced irregular but bilaterally symmetric polyhedron that approximates the endocranial cavity. The ventral surface of the parietals forms the upper face of the polyhedron. This polyhedron was defined from examination of the figures 10,17 and 18 of Starck (1979) and of a skull of V. varius (J1656) that retains some of the soft connective tissuc wallitg the endocranial cavity. The figures of Starck (1979) indicate that in V, salvator at least virtually all of the brain is included within this volume, although not filling it. The similarity in form of the parietals of V, varius to that from King Creek, suggests that this polyhedron may be used to approximate the endocranial cavity of that form as well. Because the same polyhedron is used in both instances, if the ratio of the areas of the corresponding face of each of the two polyhedra is known, the ratio of the volumes can be calculated.

The endocranial surface of the parietals of F16792 is about 5 times greater than that of V. varius (J47065). Using the relationship that volume is proportional to the $3 / 2$ power of area, this gives a ratio of volumes of about 11 to 1 . This result gives no indication that the endocranial cavity of the King Creek varanid was relatively smaller than in the modern V, varius in spite of the fact that relatively less of the ventral face of the parietal roofs the endocranial cavity in the fossil form than in the living one. In modern varanids the brain is substantially smaller than the endocranial cavity and so does not closely conform to the endocranial surfaces (Starck, 1979, figs 17 and 18). Thus no inferenoes regarding relative brain size will be essayed here.

TAXONOMIC IDENTIFICATION

Varanoid frontals are characterised by the structure of the subolfactory processes (Pregill et al., 1986), which are well developed and come in contact medially. Thus the King Creek fronrals are varanoid. Pregill et al. (1986) cite a mediolaterally compressed supratemporal process of thic parictal as characteristic of varanids, ficnce this parietal derives from a vararid.
The parietal matches in the size the fwo frontals, suggesting that both elements derive from the same species. Unfortunately the anterior suture pattern on the parietal has been worn, so
ditect compatison of theit formis is not possible. However, some similarity is evident. The parielal contact face of the frontal is stepped. its medial eentimetre situated slightly forward of the lateral portion. The anterior face of the parietal shows a corresponding step, with its medial centimetre set slightly forward. The dorsoventral ifrickness of the lateral process (2.1 cm) matches that of the frontal $(2.0 \mathrm{~cm})$, so that the two elements could have derived from the same individual, The parietal is also consistent in size with the occipital segment of Owen (1880), although thal comes from Gowrie, not King Creek. The similar thickness and form of the frontalparictal contact indicates that the frontals and parietal probably derive from the same species.

Further evidence for common derivation could be given if the parictal had a similar pattern of ormament. Unfortunately there is no indication on the dorsal face of the parietal of the unique sculplure or the sagital crest seen on the frontal. Because the dorsal face of the parictal has been worn and the sculpture of the frontal is very subdued at its posterior margin, sculpture may have been present and lost from wear. A sagittal erest, however, should have been sulficiently marked to have survived this degree of wear, Were any crest present on the parietal.
Presumably this material pertains to Me'galania prisca. The holotype of M. prisca consists of two and hatf dorsal vertebrae (BMNH 32908a, 32908b and 32908c: Lydekker, 1888), and so reference to this species must depend on comparison with associated material. No fronlals or parietals of M. prisca were previously known (Rich, 1985, figure on p. 154). However both King Creek frontals were found in association with material of M. prisca, vettebrae and tecth at Pearson's locality and vertebrac and a libia at Sutton's bed. But much other tetrapod material has also been found at these localities, so no firm conclusion may be drawn from this. However M. prisea is the only large varanid known from Pleistocene Australia, and since these skull roof elements derive from a large varanid, reference to M. prisca is reasonable.

Further conclusions may be drawn regarding theevalutionary position of the beast from which these clements derived. A close approach of the prefrontal to the postfrontal above the orbit is a derived feature (Pregill et al., 1986). Thus confluent contact surfaces for the prefrontal and postfrontal-postorbital is a derived lealure. So these frontals represent a more derived pondition than any surviving Australian varanids ex-
amined. The parieal appears less derived, in that it retains the parietal foramen (Pregill et al., 1986), and a large one at that. However I would suggest. by analogy with the cvolution of the cranial roof in large theropod dinosaurs (Walker, 1964), that reduction of the flat dorsal surface of the parietal by encroachment of the supratemporal fenestrae is also a derived feature in varanoids. This suggests that Megalania represents a more derived varanid than now exists in Australia.

DISCUSSION WITH SPECULATIONS

The frontals and parietal from King Creck appear obviously thicker than the maxillae and dentary altributed to Megalania prisca . Either the skull roof was considerably thicker than the trophic apparatus, or the rool elements derive from an individual larger than those from which the jaws are known, or there was variation, such as sexual dimorphism, in thickness of the skull elements.
A dentary, F6562, from an animal presumably approximately equal in size to that from which the cranial toof elements derive, is at the base of the teeth (where it is thickest) only 60% as thick as the frontal F16783. A maxilla (F12370), also apparently from an animal of this size, is equally thin compared to the frontal. This is not the case in the skulls of living varanids, where the frontal and dontary are approximately equally thick. The only other amniotes known to me with the skull roof significantly more massive than the trophic upparatus are the herbivorous pachycephalosaurian dinosaurs (Maryanska and Osmolska, 1974). These are quile different in cranial form. The tooth form of M. prisca implies that it was most likely either a predator or scavenger. In neither case is the braincase expected to be more robust than the trophic apparatus: such construction is unknown among living predators and scavengers,

The frontal and parietal appear to be approximatcly of the size expected to match the known maxillac and dentary, to judge from comparison with living varanids. Unless its cranial proportions were very different from modern varanids they would nol derive from an individual 30% larger than those from which the jaws come, So the possibility that they derive from individuals of different sizes seems remote.
Possibly one sex, presumably the male, had a more robust skull, or at least skull roof, than the other. There is at present no way of testing this
possibility. Sexual dimorphism is unknown in living varanids, but the environmental eircumstances of Megalania were doubtless different and scxual dimorphism is known in some mammalian top earnivores, e.g. lions.

The frontal crest suggests habits different from those of living varanids. It may have been a weapon, or display (speeies recognition) structurc. M. prisea would presumably have been a top carnivore of the Australian Plcistocene (cf. Rieh, 1985) and thus, at lcast in some respects, analogous to the large theropod dinosaurs of the Mesozoic. Large theropods bore eranial ornament, usually horns or crests (Molnar, 1977; Kurzanov, 1976; Welles, 1984; Bonaparte, 1985), thus it is not unrcasonable to suggest that M. prisca too might have had cranial ornament. The frontal erest may have been used in head to head shoving contests, as among the marine iguana Amblyrhynchus cristatus (Carpenter, 1978). Living varanids are not known to engage in such contests (Stamps, 1977; Carpenter, 1978), but the circumstanccs of the life of M. prisca, as a large terrestrial top carnivore wcrc unlike those of modern varanids.

A different speculative signifieance of the crest has also been suggested. It is well known that aquatic lizards (including some varanids) usually show lateral compression of the tail and sometimes the trunk. Furthermore many show some development of a dorsal ridge or crest along the back and tail, as in Hydrosaurus amboinensis (although rarely so prominent). In some species of Basiliscus thesc crests are complemented by a crest on the skull roof. Possibly the sagittal crest of the King Creek frontal indicates aquatic or amphibious habits. A cranial crest is found in some arboreal lizards, such as Corythophanes. We sccm safe in prcsuming, however, that the giant King Creek varanid was not arboreal.

If the King Creck varanid was amphibious or aquatic, one might expect that crocodiles would have been rare in its habitat. Indeed, crocodile remains are rare (Pearson's locality) or absent (Sutton`s bed) from the localities and levels at which the frontals were found (Sobbe, pcrs. comm., 1988; also ef. Bartholomai, 1976). This suggests that competition for the niche of a large aquatic predator would have becn weak or absent. It also suggests that predation on a large aquatic lizard would have been weak or absent.

CONCLUSIONS

Two frontals and a parietal from King Creek, eastern Darling Downs, Queensland, indicate the prescnce of a giant varanid. This form, presumably Megalania, was more derived than living varanids in two features: the contact of the articular surfaces for prefrontal and postfrontalpostorbital and the encroachment of the supratemporal fenestra over the top of the parictals. Both the appearance of unusually thick frontals and of a relatively small endocranial cavity scem to result from scaling effccts.

ACKNOWLEDGEMENTS

The persistenec and acute eyc of Mr Jan Sobbe in finding the cranial material and his kindness in donating it made this paper possible. Two of the speculations discussed in above - scxual dimorphism and aquatie habitus - were suggested by Tony Thulborn and Greg Czechura, respeetively. They are not, of course, responsiblc for my treatment of their suggestions. Valuable assistance was also given by Drs M. BorsukBialynicka (Warsaw), R. Estes and G. K. Pregill (both in San Dicgo).

LITERATURE CITED

BARTHOLOMAI, A. 1976. Notes on the fossiliferous Pleistocene fluviatile deposits of the eastern Darling Downs. Bull. Miner. Resourc. Geol. Geophys. Aust. 166: 153-4.
BONAPARTE. 3. F. 1985. A horned Cretaceous carnosaur from Patagonia. Nat. Geog. Research I: 149-51.
CARPENTER, C. C. 1978. Ritualistic social behaviors in lizards. pp. 253-67. In Greenberg, N. and MacLean, P. D. (eds), 'Behavior and Neurology of Lizards.' (National Institute of Mental Health: Rockville).
HAMLEY, T. 1990, Functions of the tail in bipedalism of lizards and dinosaurs. Mem. Qd Mus. 28: 153-8.
HECHT, M. K. 1975. The morphology and relationships of the largest known terrestrial lizard, Megalania prisca Owen, from the Pleistocene of Australia, Proc, R. Soc. Vict. 87: 239-49.
KURZANOV, S. M. 1976. Novie pozdnemelovoi karnozavr iz Nogon-Tsava, Mongoliia. Sovmest. Sovet.-Mongol. Paleont.Eksped., Trudy 3: $93-$ 104.

LYDEKKER, R. 1888. 'Catalogue of the Fossil Reptilia and Amphibia in the British Museum
(Natural History), Cromwell Road, S.W. Part 1.' (British Museum: London). 309pp.
MARYANSKA, T. AND OSMOLSKA, H. 1974. Pachycephalosauria, a new suborder of ornithischian dinosaurs. Palaeont. pol. 30: 45-102.
MCMAHON, T. A. 1973. Size and shape in biology. Science 179: 1201-4.
1975. Allometry and biomechanics: limb bones in adult ungulates. Amer. Nat. 109: 547-63.
MCMAHON, T. A. AND BONNER, J. T. 1983. 'On Size and Life.' (Scientific American Library: New York). 255pp.
MOLNAR, R. E. 1977. Analogies in the evolution of combat and display structures in ornithopods and ungulates. Evol. Theory 3: 165-90.
OWEN, R. 1859. Description of some remains of a gigantic land-lizard (Megalania prisca*, Owen) from Australia. Phil. Trans. R. Soc. London 149: 43-8.
1880. Description of some remains of the gigantic land-lizard (Megalania prisca), from Australia.Part 11. Phil. Trans. R. Soc. London 171: 103750.

PREGILL, G. K., GAUTHIER, J. A. AND GREENE, H. W. 1986. The evolution of helodermatid
squamates, with description of a new taxon and an overview of Varanoidea. Trans. San Diego Soc. Nat. Hist. 21: 167-202.
RICH, T.H. 1985. Megalania prisca the giant goanna. pp. 152-5. In Rich, P. V. and van Tets, G. F. (eds), 'Kadimakara'. (Pioneer Design: Melbourne).
STAMPS, J. A. 1977. Social behavior and spacing patterns in lizards. pp. 265-334. In Gans, C. and Tinkle, D. W. (eds), 'Biology of the Reptilia, 7, Ecology and Behaviour A'. (Academic Press: London).
STARCK, D. 1979. Cranio-cerebral relations in recent reptiles. pp. 1-38. In Gans, C., Northcutt, R. G. and Ulinski, P. (eds), 'Biology of the Reptilia. Vol. 9, Neurology A.' (Academic Press: London).
WALKER, A. D. 1964. Triassic reptiles from the Elgin area: Ornithosuchus and the origin of carnosaurs. Phil. Trans. R, Soc. London, B 248: 53-134.
WELLES, S. P. 1984. Dilophosaurus wetherilli (Dinosauria, Theropoda) osteology and comparisons. Palaeontographica A 185: 85-180.

